If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+7.5x+1=0
a = 9; b = 7.5; c = +1;
Δ = b2-4ac
Δ = 7.52-4·9·1
Δ = 20.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7.5)-\sqrt{20.25}}{2*9}=\frac{-7.5-\sqrt{20.25}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7.5)+\sqrt{20.25}}{2*9}=\frac{-7.5+\sqrt{20.25}}{18} $
| 4x+14=-58-x | | (6x)^6=6^6 | | 2r+31=10r-41 | | -(x+3)=-8x | | 7(x-2)=10+3x | | 3(2x-1)=3x+48 | | -3x+4=2(x+(2/5)) | | 4+x*6=36 | | A+3a+5a-2a=14 | | 5x+3x+4=20 | | 16b=80-4b | | C=2x22/7x14 | | 10^44=1e+44 | | X=18t | | 7x+1=-3x-2 | | 1=0.05(1-x) | | 4+9(5x-3)=34 | | 2(x-5)=3(5-x) | | 3x(x-5)+2=11 | | 3x÷4=6 | | 3x(x+3)+4=16 | | 10x+25=6x+65 | | 2n-5=n1 | | 5(x-1)=-7(2x-4) | | Y2n-5=n+1 | | 2x-35=0 | | 8(3-2x)=8 | | 4x+15=2x+50 | | -7(x+4)+4(x+7)=5 | | 12x+72=36 | | 5+19=6x-6 | | 100÷0.01x=10 |